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(4) Introduction

Previous studies have found that there is a strong correlation between mammographic
breast density and the risk of breast cancer. Mammographic breast density has been used by
researchers in many studies to estimate breast cancer risk of epidemiological factors, monitor the
effects of preventive treatments such as tamoxifen or dietary interventions, monitor the breast
cancer risk of hormone replacement therapy, and investigate factors affecting mammographic
sensitivity and cancer prognosis. However, most studies used Breast Imaging Reporting and
Data System (BI-RADS) density rating as a measure of mammographic breast density, which
contributes large inter- and intraobserver variations and may reduce the sensitivity of the
analysis.

The goal of this proposed project is to develop a fully automated technique to assist
radiologists in estimating mammographic breast density. We hypothesize that the computerized
technique can accurately and efficiently segment the dense area on digitized or digital
mammograms, thereby eliminating inter- and intra-observer variations. The dense area as a
percentage of total breast area thus estimated will be more consistent and reproducible than
radiologists' subjective BI-RADS rating. To accomplish this goal, we will (1) collect a large
database of mammograms, including digitized film mammograms and digital mammograms, for
training and testing the dense area segmentation program; (2) evaluate the correlation between
the radiologists' breast density classification based on BI-RADS lexicon and the percent breast
dense area; and (3) study the correlation of percent breast dense area between different views of
the same breast and between the same view of the two breasts; and (4) investigate the correlation
between the percent breast dense area estimated from mammograms and the volumetric dense
breast tissue estimated from a data set of magnetic resonance (MR) breast images. These
comparisons will provide important information regarding the consistency of the BI-RADS
rating with the measured percent breast dense area, the appropriate measure of % dense area from
different mammographic views, and the usefulness of using the percent breast dense area on
mammograms as an indicator of volumetric breast tissue density.

It is expected that this project will produce a fully automated and effective tool for analysis
of mammographic breast density, which can be applied to routinely acquired mammograms
without special calibrations. This will facilitate studies of various factors associated with breast
cancer risk and mammographic sensitivity, and monitoring the effects of interventional or
preventive strategies. The image analysis tool will therefore contribute to the understanding of the

relationship of density to breast cancer risk, detection, prognosis, and to the prevention and
treatment of breast cancer.




(5) Body

The current year (7/1/03-6/30/04) is the third year of the project. We requested and
obtained approval for a one-year no-cost time extension. Therefore, this is an annual progress
report instead of the final report. We will describe in the following details of the studies that we
performed this year.

(A)  Collection of a Database of Full Field Digital Mammograms (DMs) and Digitized
Mammograms (DFM)

In this project year, we continued to enlarge the data set of full field direct digital
mammograms acquired from a GE Senographe 2000D system. A data set of 99 patients with 101
pairs of digital mammogram (DM) and digitized screen-film mammogram (DFM) obtained from
the same patients have been collected to date. This data set was used in two studies for
development of a breast density analysis tool for digital mammograms. In the first study,
radiologists segmented the mammographic density on the DMs and the DFMs using interactive
thresholding.  The mammographic density perceived by radiologists on the two types of
mammograms of the same patient was compared. In the second study, a computerized breast
density segmentation program developed for the DFMs was directly applied to DMs and the
computer’s density segmentation was compared with that by radiologists. This study was
designed to evaluate the segmentation performance and obtain information how to adapt the
mammographic density segmentation program to DMs.

(A) Comparison of Percent Mammographic Density Estimated on Full Field Digital
Mammograms and Digitized Screen-Film Mammograms

We are comparing image information on DMs and DFMs for radiologist’s interpretation
and computerized image analysis. In last year’s report, we discussed a preliminary study for the
comparison of mammographic density estimated on DMs and DFMs, In this year, we completed
the study and presented the results at the 89™ Scientific Assembly and Annual Meeting of the
Radiological Society of North America held in December of 2003 in Chicago. The study is
summarized in the following.

(a) Data Set

Two hundred and two pairs of DM and DFM were collected with IRB approval from 99
patients. Each case contains the craniocaudal (CC) view and the mediolateral oblique (MLO)
view. The time interval between the DM and DFM ranged from 0 to 118 days (mean=26.3
days). The DFMs were acquired with GE DMR systems and the DMs were acquired with the GE
Senographe 2000D system. Both the DMs and the DFMs were acquired with automated

exposure techniques that selected the appropriate target, filter, and kVp. The DFMs were
digitized with a laser film scanner.

(b)  Graphical User Interface for Segmentation of Breast Density on Digital
Mammograms
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Fig. 1. Graphical user interface for segmentation of breast density on digital or digitized
mammograms. Upper: First screen that shows the two-view mammograms together.
Lower: the second screen that shows one view at a time, and the histogram and
thresholded image for user reference during interactive thresholding.




We have previously developed a graphical user interface (GUI) for interactive
thresholding of dense tissue regions on DFMs. The GUI is used in observer experiments so that
radiologists can segment the mammograms manually and provide a gold standard for developing
automated computerized segmentation methods. We have modified the GUI for DFMs to be
used with DMs. In this study, we used the new GUI for DMs to manually segment a data set of
DMs. The results are compared with manual segmentation of DFMs of the same patients in our
data set described above, using the previously developed GUL

(b)  Methods

The breast boundaries on the DMs and DFMs were detected automatically by the
computer. The mammograms were displayed on a workstation with the GUI as shown in Fig. 1
The DFMs are processed with a dynamic range compression technique to reduce the gray level
range of the image. For the DMs, we used the processed GE DM image as input. The gray level
histogram of the breast region is displayed and the observer can adjust the gray level threshold
interactively to segment the dense region from the fatty region. The segmented image (binary
image with dense region in white and fatty region in black) is shown on the display virtually in
real time while the threshold is being adjusted. The observer can then change the threshold until
he/she is satisfied that the segmented region is similar to the dense region seen on the gray level
mammogram by subjective judgment. The DMs and DFMs were mixed but the DM and the
DFM from the same patient were separated by at least 10 other mammogram pairs. In this way,
the observer would not be able to compare the density of the corresponding DM and DFM. The
mammographic density was estimated as the percent dense area relative to the breast area,
excluding the pectoral muscle in the MLO views. Five Mammography Quality Standards Act
(MQSA) qualified radiologists participated as observers in the experiment.

(c) Results

Fig. 2 shows the comparison of the percent breast density on the data set of 99 pairs of
digitized DFMs and DMs for CC and MLO views segmented by an experienced radiologist. The
slope of the linear regression line to the scatter plot is greater than 1 for both views.

Fig. 3 shows the difference in the percent breast density between the DFM and the DM
from the same breast and the same view. Most of the differences are greater than 0. Fig. 4
shows the ratio of the percent breast density on DFM to that on the corresponding DM. Most of
the ratios are greater than 1. These results indicate that the mammographic density estimated
from DFMs are on average lower than that from DFMs, Table 1 summarized the results for the 5
radiologists. Four of the five radiologists found that the mammographic density on the DFM is
higher than that on the corresponding DMs. The mean difference in the segmented density was
about 3.5% and the mean ratio was about 1.30, indicating that the mammographic density
appears to be 30% higher, on average, on the DFMs. The difference in the estimated
mammographic density was found to be statistically significant (p<0.05) by a paired t-test.

Since the DFM and the corresponding DM were taken within a relatively short period of
time. The breast tissue density should not change very much on average. The difference in the
mammographic density may be attributed to the harder beam quality used and the digital image
processing applied to the DMs. The lower density may improve the mammographic sensitivity
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for lesion detection on dense breasts. However, for patients with DFMs and DMs taken over
time, comparison of serial mammograms for breast density changes will be problematic.
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Fig. 2. Comparison of the percent mammographic density from the digital and digitized
mammograms segmented by an experienced radiologist. The dashed line is the linear
regression curveThe percent density from digitized mammograms are generally higher than
those from digital mammograms.
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average higher than that from the digital mammogram.

Table 1. The mean difference and mean ratio of percent mammographic density estimated on
DFMs and DMs by 5 experienced radiologists. The results indicated that four of the five )
radiologists perceived a higher density on DFMs than that on DMs. The average results are
found to be statistically significant (p<0.05) by paired t-test over the group of radiologists.

Mean Difference in Mean Ratio of
Radiologist % Density % Density
(Film — Digital) (Film / Digital)
Rad 1 4.92 1.35
Rad 2 5.50 1.53
Rad 3 4.63 1.39
Rad 4 4.66 1.35
Rad 5 -2.01 0.88
Average (all) 3.54 1.30
Average (#1 - #4) 4.93 1.40

®) Automated Segmentation of Dense areas on Digital Mammograms

In the previous project years, we developed a computerized system, mammographic
density estimator (MDEST) (Zhou et al. 2001), to estimate breast density automatically on
digitized film mammograms (DFM). The MDEST system performs dynamic range compression,
breast boundary tracking, pectoral muscle trimming for MLO view, gray level thresholding based
on histogram analysis, and calculation of the percent dense area on the mammogram. In the
previous study, 260 digitized 4-view mammograms of 65 patients were used. The gold standard
of percent dense area of the breast region for each mammogram was obtained by averaging five

Page 9




radiologists’ manually segmented percent dense area. We found that the correlation between the
computer-estimated percent dense area and radiologists’ manual segmentation was 0.94 and 0.91,
with root-mean-square (RMS) errors at 6.1% and 7.2%, respectively, for CC and MLO views.

In this study, we investigate the feasibility of computerized mammogramic density
estimation on DMs and DFMs using the same image segmentation system. The MDEST system
was directly applied to the DM and the corresponding DFM without any re-training except that
the preprocessing filter was modified for DMs. The performance was evaluated by analyzing the
correlation between the computer-estimated mammographic density and the gold standard
obtained by radiologists’ interactive thresholding.

(a) Data Set

The data set described in Section (A) above was used in this study. The preprocessed
image was downsized to a pixel size of 800 um x 800 pm image and 4096 gray levels. was
digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 pum x 50 pm and 4096

gray levels. The digitized mammogram was also downsized to a 800 pm x 800 um image using a
16x16 box filter.

(b) Methods

Our previously developed computerized system MDEST was applied to the DMs and
DFMs to estimate the mammographic density without any re-training. The density estimation
was performed in three stages: breast region segmentation, image enhancement, and gray level
thresholding based on histogram analysis . First, the breast region was segmented from the
surrounding background by an automated breast boundary tracking algorithm for DFM. For DM,
thresholding was used to separate the breast region from the background. Since our current
pectoral muscle trimming program is not 100% accurate, the pectoral muscle was manually
trimmed on the MLO view images for both DFM and DM in this study in order to separate the
errors due to breast density segmentation from those due to pectoral muscle trimming. Second,
an adaptive dynamic range compression technique was applied to enhance the DFM image. For
DM image, a Laplacian pyramid multi-resolution preprocessing method (Wei et al. 2004) was
used for image enhancement. At the third stage, for both DM and DFM, rule-based classification
was used to classify the breast image into one of four classes according to the characteristic
features of its gray level histogram (Zhou et al. 2001). For each image in the classified classes, a
gray level threshold was determined adaptively to segment the dense area from the breast region.
The breast density was estimated as the percentage of the segmented dense area relative to the
breast area. To evaluate the performance of MDEST, the computer segmentation results were
compared to those by manual segmentation with interactive thresholding by MQSA radiologists.
The “gold standard” of percent dense area for each mammogram was obtained by averaging the
manually segmented percent dense areas of four of the radiologists. The results of one of the
radiologists who perceived the DMs as more dense than the DFMs was not included because that
appeared to be an outlier.




(¢) Results

Fig. 5(a)-(d) show the comparison of the percent dense area between the estimation by the
MDEST system and the gold standard on DM and DFM for CC- and MLO-view mammograms,
respectively. Table 2 summarizes the comparison between the MDEST performance and the gold
standard for DM and DFM, respectively. The correlation between the computer-estimated
percent dense area and the gold standard is 0.850 and 0.873 on DM, and 0.885 and 0.824 on
DFM, for CC and MLO views, respectively. For all of the images combining CC- and MLO-
views, the correlation is 0.859 and 0.855 on DM and DFM, respectively. The RMS difference in
the percent dense area between the MDEST estimation and the gold standard is 7.26%, 5.70%
and 6.52% on DM, and 6.87%, 8.16% and 7.54% on DFM for CC-view alone, MLO-view alone,
and combined CC and MLO-views, respectively.
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Figure 5. Comparison of the percent dense area between the estimation by the MDEST system
and the gold standard. The dashed line represents the linear regression of the data on the
plot. (a) DM CC view, (b) DM MLO view, (¢) DFM CC view, (d) DFM MLO view.




Table 2. The correlation and RMS difference between the estimated percent dense area by
the MDEST system and the gold standard (average of four MQSA radiologists).

DM DFM

Image subsets
Correlation RMS Error | Correlation  RMS Error

CC view 0.850 7.26% 0.885 6.87%
MLO view 0.873 5.70% 0.824 8.16%
All images 0.859 6.52% 0.855 7.54%

(d) Discussion

This preliminary study demonstrated that the estimation of mammographic density could
be performed efficiently by our automated image analysis tool. The computer-estimated percent
dense area had a high correlation with the gold standard obtained from averaging four MQSA
radiologists’ manual segmentation. The results also demonstrated the feasibility of estimating
breast density automatically on DM and DFM using the same MDEST system. However, it can
also be observed that some mammograms were not segmented accurately and the percent density
deviated relatively far from the diagonals. Improvement in the MDEST method will be needed to
increase the breast density segmentation accuracy. We will continue to investigate methods to
improve the segmentation in the coming project year.

(6) Key Research Accomplishments

» Continue to collect the data sets of digitized film mammograms and digital mammograms for
development of the automated density segmentation program (Task 1).

e Complete an observer performance study with five MQSA radiologists in manual

segmentation of the digitized film mammograms and digital mammograms (Task 2 and Task
4).

e Compare the mammographic density segmented from DFMs and DMs to evaluate the
similarity or differences of the properties between DFMs and DMs (Task 2 and Task 4).

* Develop a Graphical User Interface (GUI) for interactive segmentation of full field direct
digital mammograms (Task 4)

¢ Compare automated density segmentation results on DMs with MQSA radiologists’ manual
segmentation and evaluate the performance of the automated program (Task 2 and Task 4).




(7)  Reportable Outcomes

As a result of the support by the USAMRMC BCRP grant, we have conducted studies to
investigate the correlation between the mammographic density on digital mammograms and
digitized film mammograms, and evaluate the performance of the automated mammographic
density segmentation program for digital mammograms. We have presented the results of these
investigations in this project year. The journal article that we submitted last year was also
published.

Journal Articles:

Wei J, Chan HP, Helvie MA, Roubidoux MA, Sahiner B, Hadjiiski L, Zhou C, Paquerault S,
Chenevert T, Goodsitt MM. Correlation between Mammographic Density and Volumetric
Fibroglandular Tissue Estimated on Breast MR Images. Medical Physics 2004; 31: 933-942.

Conference Proceeding:

Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski LM,
Sahiner B. Performance evaluation of an automated breast density estimation system for digital
mammograms and digitized film mammograms. In: Digital Mammography IWDM 2004: 7th
International Workshop on Digital Mammography. Ed. Pisano E. (in press).

Conference Presentation:

Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Helvie MA, Wei, J. Computerized mammographic
breast density estimation: Expectation-Maximization estimation and neural network
classification of breast density. Presented at the 89™ Scientific Assembly and Annual Meeting of
the Radiological Society of North America, Chicago, IL, November 30-December 5, 2003.
RSNA Program 2003; 389.

Zhou C, Chan HP, Wei J, Helvie MA, Roubidoux MA, Paramagul C, Nees A, Hadjiiski LM,
Sahiner B. Performance evaluation of an automated breast density estimation system for digital
mammograms and digitized film mammograms. Presented at the 7th International Workshop on
Digital Mammography. IWDM-2004. Durham, North Carolina. June 18-21, 2004.

(8) Conclusions

During this project year, we completed the observer study that compared the
mammographic density manually segmented by 5 experienced radiologists from DFMs and DMs.
We found that, on average, the mammographic density estimated from DMs is significantly
lower than that estimated from DFMs. The differences in the mammographic density between
the two modalities may be attributed to the harder beam quality used and image processing
applied to the DMs. The lower density on DMs may improve the mammographic sensitivity for
lesion detection on dense breasts. However, for patients with DFMs and DMs taken over time,
comparison of serial mammograms for breast density changes will be problematic.
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We also performed a study to compare mammographic density segmented from DMs by
our automated density segmentation program, referred to as Mammographic Density ESTimator
(MDEST), with the average mammographic density manually segmented by four experienced
radiologists. The mammographic density from DMs obtained by our automated MDEST
program is highly correlated with the average mammographic density manually segmented by
radiologists. The results indicate the feasibility of using our automated MDEST for estimation of
mammographic density, although further investigations are still needed to improve the accuracy
of the segmentation program.

If successfully developed, the computerized image analysis tool can provide a consistent
and reproducible estimation of percent dense area on routine clinical mammograms. The
automated image analysis tool may improve the sensitivity of quantifying mammographic density

changes, thereby contributing to the understanding of the relationship of mammographic density
to breast cancer risk, detection, and prognosis, and the prevention and treatment of breast cancer.
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Correlation between mammographic density and volumetric fibroglandular
tissue estimated on breast MR images

Jun Wei,® Heang-Ping Chan, Mark A. Helvie, Marilyn A. Roubidoux, Berkman Sahiner,
Lubomir M. Hadjiiski, Chuan Zhou, Sophie Paquerault, Thomas Chenevert, and
Mitchell M. Goodsitt

Department of Radiology, University of Michigan, Ann Arbor, Ann Arbor, Michigan 49109

(Received 18 June 2003; revised 26 November 2003; accepted for publication 21 January 2004;
published 26 March 2004)

Previous studies have found that mammographic breast density is highly correlated with breast
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo-
grams for estimating breast density by analyzing the correlation between the percent mammo-
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset
of 67 cases having MR images (coronal 3-D SPGR T1-weighted pre-contrast) and corresponding
4-view mammograms was used in this study. Mammographic breast density was estimated by an
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator
(MDEST) developed previously in our laboratory. For the estimation of the percent volume of
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices
containing the breast. Interobserver variation was measured for 3 different readers. It was found that
the correlation between every two of the three readers for segmentation of MR volumetric fibro-
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by an experienced
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91
and 0.89, respectively. The root-mean-square (rms) residual ranged from 5.4% to 6.3%. The mean
bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density
may be a useful indicator of changes in fibroglandular tissue volume in the breast, © 2004 Ameri-
can Association of Physicists in Medicine. [DOIL: 10.1118/1.1668512]
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i. INTRODUCTION lated with parenchymal density patterns but they appeared to
be less sensitive measures of relative risk than the percent
dense area."? In current practice, breast density is esti-
mated mainly by radiologists’ visual judgment of the fibro-
glandular tissue imaged on mammograms following the
Breast Imaging—Reporting and Data System (BI-RADS)
lexicon.*®3! Because of the qualitative and subjective nature
of visual judgment, there are large intraobserver and interob-
server variations in the estimated breast density. The large
variability may reduce the observed correlation between
breast cancer risk and breast density. It may also reduce the

Studies have shown that there is a strong positive correlation
between breast parenchymal density imaged on mammo-
grams and breast cancer risk.!™ The relative risk is estimated
to be about 4 to 6 for women whose mammograms have
parenchymal densities over 60% of the breast area, as com-
pared to women with less than 5% densities. Other cohort
studies*™'® also found that breast cancer risk in the category
with the most extensive dense tissue was 1.8 to 6 times as
high as that in the category with the least extensive dense
tissue. Mammographic density as the risk indicator is greater

than almost all other risk factors of breast cancer.!* Al-
though there is no direct evidence that changes in mammo-
graphic breast densities will result in changes in breast can-
cer risk, the strong correlation between breast density and
breast cancer risk has prompted researchers to use mammo-
graphic density for monitoring the effects of intervention as
well as for studying breast cancer etiology.'*"’

A number of researchers have investigated image
analysis techniques to estimate breast density.’>'3-2% The
common approaches are to analyze the textural pattern or the
percentage of mammographic densities relative to the breast
area. It has been found that the texture measures were corre-
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sensitivity of studies using mammographic density for moni-
toring the effect of risk modifying treatments. We have de-
veloped an automated image analysis system, Mammo-
graphic Density ESTimator (MDEST), to assist radiologists
in estimating breast density on mammograms. A computer-
ized analysis is expected to increase the reproducibility and
consistency in the estimation of mammographic density,
thereby improving the accuracy of the related studies. In our
previous study, we have found that the percent mammo-
graphic density segmented by MDEST agreed closely with
that estimated by radiologists’ interactive thresholding.*?
The high correlation between breast cancer risk and breast

© 2004 Am. Assoc. Phys. Med. 933
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density indicates that breast cancer risk may be closely re-
lated to the volume of glandular tissue in the breast. Among
the modalities available for breast imaging at present, mag-
netic resonance (MR) imaging is likely to be the most accu-
rate method for volumetric dense tissue estimation because
fibroglandular tissue and adipose tissue can be well distin-
guished in MR images when a proper image acquisition tech-
nique is used.’> However, MR imaging is expensive, making
it difficult to use MR imaging as a routine monitoring
tool.3*** On the other hand, a mammogram is a two-
dimensional (2-D) projection image of a three-dimensional
(3-D) object. The area of dense tissue measured on a mam-
mogram is not an accurate measure of the volume of fibro-
glandular tissue in the breast because no thickness informa-
tion is used. However, mammography is a widely available
low cost procedure that may be used for monitoring breast
density change during preventive and interventional treat-
ment or other studies. Women who participate in screening
will also have mammograms readily available for retrospec-
tive review. Therefore, mammography will most likely be the
method of choice for breast density estimation.

In this study, we investigated the correlation between the
volumetric fibroglandular tissue in the breast and the pro-
jected breast dense area on mammograms by analyzing the
percent volumetric fibroglandular tissue in MR breast images
and the percent dense area in corresponding mammograms.
Our purpose in this study is not to evaluate the usefulness of
either MR fibroglandular tissue volume or mammographic
density as an indicator for breast cancer risk, which have
been studied by other investigators. Rather, we used the MR
breast images to estimate the volumetric fibroglandular tissue
in the breast and explored the reason that a change in mam-
mographic density (2-D) can be used as an indicator of breast
density change (3-D). These comparisons will provide a bet-
ter understanding of their relationship, and may lead to im-
proved methods for utilizing mammographic density as a
surrogate marker for breast cancer risk.

Il. MATERIALS AND METHOD
A. Dataset

In a previous study, gadolinium contrast enhanced MR
dynamic imaging was employed to characterize malignant
and benign breast lesions. A dataset was collected with IRB
approval which included MR images and corresponding
mammograms acquired between detection and before biopsy
for a given patient. In the MR study, several series of images
were acquired for each patient. Patients were scanned prone
using a commercial dual phased-array breast coil. The imag-
ing protocol included a series was the coronal 3-D TI-
weighted pre-contrast series (coronal sections 2—5 mm thick,
32 slices; 3-D Spoiled Gradient-Recalled Echo (SPGR); TE
=3.3ms; TR=10 ms, Flip=40°, matrix=256X 128, FOV
=28-32 cm right/left, 14-16 cm superior/inferior, scan
time=2 min 38 sec). This 3-D SPGR sequence produces full
volume coverage of both breasts with contiguous image sec-
tions. The dense parenchyma and fat tissue are well sepa-
rated with this heavily T1-weighted acquisition. We used a
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set of 67 patients to study the correlation between the 2-D
projected percentage of dense area on a mammogram and the
percentage of dense tissue volume estimated from the 3-D
MR images.

The mammograms consisting of the craniocaudal (CC)
view and the mediolateral oblique (MLO) view of both
breasts of the patient were digitized with a LUMISYS 85
laser film scanner at a pixel size of 50 umX50 um. The
digitizer has a gray level resolution of 12 bits and a nominal
optical density (O.D.) range of 0 to 4. For density segmen-
tation, it is not necessary to use very high-resolution images.
To reduce processing time, the full resolution mammograms
were first smoothed with a 16X 16 box filter and subsampled
by a factor of 16, resulting in 800 £mX 800 um images for
this study.

B. Estimation of fibroglandular tissue volume on MR
images

Since it is not our intention to routinely segment MR im-
ages for breast density estimation, we did not attempt to
develop an automated method for this application. Our algo-
rithm for segmentation of volumetric fibroglandular tissue on
MR images used a semi-automatic method. The computer
performed an initial segmentation. A graphical user interface
(GUI) was developed to allow a user to review the segmen-
tation of every slice and make modifications if necessary.
The method consists of four steps. First, the breast boundary
was detected automatically on each slice. A deformable
model and manual modification were used to correct for in-
correctly detected boundaries that usually occurred in slices
near the chest wall where there were no well-defined breast
boundaries. Because of inhomogeneity of the breast coil sen-
sitivity, the signal intensity in the breast region was not uni-
form across the field of view. A background correction tech-
nique that estimated the low frequency background from the
gray levels along the breast boundary was developed to re-
duce this systematic nonuniformity. Manual interactive
thresholding of the gray level histogram in the breast region
was then used to separate the fibroglandular from the fatty
region. Morphological erosion was used to exclude the skin
voxels along the breast boundary. Finally, the volume of fi-
broglandular tissue was calculated by integration over all
slices containing the breast. A flow chart of our algorithm is
shown in Fig, 1.

C. Breast boundary detection

A two-step algorithm was developed for the detection of
breast boundary on each slice. First, we used a seeded pixel
thresholding algorithm (SPTA) for the initial assessment of a
breast boundary. Second, a 2-D active contour algorithm fur-
ther refined the boundary. For slices close to the chest wall
where no clear boundary can be seen, manual modification
was used to outline an estimated boundary.

The SPTA determined the optimal threshold by iteratively
partitioning the MR image into two parts and using the gra-
dient value along the boundary of the partition as a guide in
optimizing the threshold. First, the center of gravity was se-
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FiG. 1. The flow-chart for the segmentation of the fibroglandular tissue on
MR images.

lected as the starting pixel on each slice. The gray level of
the starting pixel was used as a threshold to create a binary
partition of the image in which all pixels greater than the
threshold were set to one and all other pixels were set to
zero. Second, the gradient value of each pixel on the bound-
ary of the binary partition was calculated by applying the
Sobel filter to the original image. The gradient assessment
for this particular binary partition was defined as the average
gradient magnitude of these boundary pixels. The threshold
value was reduced to zero in a stepwise manner. The parti-
tion for each threshold value was created and the gradient
assessment for each partition was calculated as described
above. The partition with the maximum gradient assessment
was considered to be the initial segmentation result for the
breast, and the boundary of this partition was considered to
be the initial breast boundary.

After the initial segmentation, a deformable contour
method was used to further refine the boundary. The move-
ment of the boundary pixel was controlled by an energy
function which consisted of internal energy and external en-
ergy. The internal energy components used in this study were
the continuity and curvature of the contour, as well as the
homogeneity of the segmented partition. The external energy
components were the negative of the smoothed image gradi-
ent magnitude, and a balloon force that exerted pressure at a
normal direction to the contour. The energy function was
defined as the following:

N
Ezczl [Eimer(c)+Eexert(c)]a (1)

where Ej, and E.,.,, are the internal energy and the external
energy, respectively, as defined in Eq. (2) and Eq. (3):

Einter= wcurvEcurv( 4 ) + WcontEcont( C) + WhomEhom s (2)
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(a) (c)

FIG. 2. An example of the first three processing blocks in Fig. 1. (a) Original
MR slice; (b) automatically-detected breast boundary superimposed on the
image; and (c) the background-corrected image.

Eexer(= WgradEgrad( C) + Wba]Ebal( C) ’ (3)

where curv, cont, grad, bal, hom denoted curvature, continu-
ity, gradient, balloon force and homogeneity, respectively,
and each energy term was associated with a weight, w. The
detailed definition for each term can be found in the
literature.*> An example of a MR slice of a breast is shown in
Fig. 2(a), and the segmented boundary is shown in Fig. 2(b).
Note that the two breasts of a patient were scanned together
but each breast was analyzed separately.

D. Background correction

To reduce the nonuniformity of the MR signal intensity in
the breast region, a background correction technique®® using
the pixel values around the segmented breast region was em-
ployed. For a given pixel (i,j) inside the breast region, the
gray value of the background image was estimated as shown
in Eq. (4):

B_,_L+R+U+D Loy 1o
2 P S S A PP S
4)

where L, R, U and D are the average gray values inside a
breast background estimation region (BBER) centered at the
left, right, upper and lower pixels on the breast boundary,
respectively. A BBER was defined as the intersection of a
21X 21-pixel box and the breast region. The center pixels for
the left and right boxes were the intersection points between
the breast boundary and a horizontal line passing through the
given pixel (i,j). Similarly, the upper and lower center pix-
els for the upper and lower boxes were the intersection points
between the breast boundary and a vertical line passing
through the given pixel (i,j). Only the pixels that were
within the intersected area between the 21X 21-pixel box and
the breast region were included in the definition of the BBER
and the calculation of the average gray value. The contribu-
tions of the average gray levels to the background pixel (i,f)
were inversely weighted by their distances d,.d,.d,.d,
from the given pixel (i,j). An example of the background
corrected image is shown in Fig. 2(c).

E. Segmentation of fibroglandular tissue

We developed a GUI that allowed the user to perform a
combination of manual and automatic operations to segment
the breast boundary and the fibroglandular tissue on the MR
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images. The first window (not shown) displayed the MR se-
ries and the corresponding mammogram of each breast to
give the user an overview of the breast. The segmentation of
the fibroglandular tissue on each MR slice was processed in
the second window, shown in Fig. 3. The original MR slice,
the corresponding background corrected image and the seg-
mented binary image were shown in the upper part of the
window. At the lower part of the window, the histogram of
the voxel values in the breast region was shown. The user
performed interactive thresholding on the histogram and the
segmented binary image corresponding to the chosen thresh-
old was displayed in real time in the upper part. If the breast
boundary, which was automatically segmented by the com-
puter initially, had to be corrected, the user could go to the
third window and manually move the apices of the polygon
outlining the boundary. The voxels contributed by the nipple
were excluded. On the slices containing breast skin that had
voxel values similar to those of fibroglandular tissue, a mor-
phological erosion operation was applied to the breast
boundary to exclude the skin voxels from the calculation of
the fibroglandular tissue volume in the slice. The size of the
structuring element could be selected interactively on the
fourth window and the eroded boundary was displayed in-
stantly for a chosen erosion operation. The user might again
change the structuring element if the erosion result of the
previous choice was deemed unsatisfactory. Since the eroded
boundary only marked the region within which the fibroglan-
dular voxels would be summed and would not be used for
the calculation of the breast volume, as described below, it
did not need to be precise as long as it excluded the skin
voxels while not excluding the fibroglandular voxels.
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FiG. 3. The graphic user interface for
the segmentation of the fibroglandular
tissues on the MR slice. The upper
row shows the original MR slice (left),
the  background-corrected  image
(middle) and the segmented binary im-
age (right). The segmented image re-
sponds to the reader’s adjustment of
the gray level threshold (lower row) in
real time so that the reader can choose
the appropriate threshold by inspecting
the segmented image visually. The
dark area in the segmented image in-
dicates the fibroglandular tissue and
the white area indicates the adipose
tissue. The inner line along the breast
boundary is the boundary obtained by
morphological erosion to exclude the
skin voxels for calculating the fibro-
glandular tissue volume.

F. MR fibroglandular tissue volume

After the fibroglandular tissue was segmented for each
slice, the total number of voxels containing the fibroglandu-
lar tissue was obtained as a summation of these voxels over
all slices of the breast. The total volume of the breast was
obtained as the summation of the voxels enclosed by the
breast boundary before morphological erosion. The ratio of
these two volumes provided the percent volumetric fibro-
glandular tissue in the breast.

G. Mammographic density segmentation

We have previously developed an automated method for
segmentation of the dense fibroglandular area on mammo-
grams. The method, referred to as the Mammographic Den-
sity ESTimator (MDEST) was described in detail
elsewhere.’? In brief, the breast boundary on the digitized
mammogram is tracked. A dynamic-range compression tech-
nique reduces the gray level range of the breast area. By
analyzing the shape of the gray level histogram, a rule-based
classifier classifies the breast density into one of four classes.
Typically, a Class I breast is almost entirely fat; it has a
single narrow peak on the histogram. A Class II breast con-
tains scattered fibroglandular densities. Its histogram has two
main peaks, with the smaller peak on the right of the bigger
one. A Class III breast is heterogeneously dense. Its histo-
gram also has two peaks, but the smaller peak is on the left
of the bigger one. A Class IV breast is extremely dense. Its
histogram has mainly a single dominant peak, but the peak is
wider compared with the peak in the Class I histogram. A
second smaller peak sometimes occurs on the left of the
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main peak. Based on the histogram shape, a threshold is
automatically calculated to separate the dense and fatty pix-
els. The mammographic density was estimated as the per-
centage of fibroglandular tissue area relative to the total
breast area. For MLO view mammograms, the pectoral
muscle is detected and excluded from the density area or
breast area calculations. In our previous work, the perfor-
mance of MDEST was verified by comparison with manual
segmentation by 5 breast imaging radiologists using a dataset
of 260 mammograms from 65 patients that were different
from the cases used in the current study. We found that the
correlation between the computer-estimated percent dense
area and the average segmentation by the 5 radiologists was
0.94 and 0.91, respectively, for CC and MLO views, with a
mean bias of less than 2%.

MDEST was applied to the mammograms of the 67 pa-
tients used in this study. The percent dense area on mammo-
grams was estimated for the CC-view and the MLO-view
mammogram of each breast separately. In addition, an
MQSA-qualified radiologist also segmented the dense area
by interactive thresholding for each mammogram. The cor-
relation between the mammographic density obtained by
manual and automatic segmentation is shown in Figs. 4(a)
and 4(b) for the CC view and MLO view, respectively. The
correlation coefficients for the CC view and MLO view were
0.90 and 0.89, respectively. The mammographic densities es-
timated by automatic and manual segmentation were com-
pared with the percent volumetric fibroglandular tissue on
MR images as described below.

H. Observer experiments

We performed an experiment to evaluate the variability of
the estimated % volumetric fibroglandular tissue due to the
uncertainty in the determination of the starting slice of the
breast at the chest wall. The starting slice affected the esti-
mation of the breast volume that was calculated by integrat-
ing from the starting slice to the anterior of the breast.
Twenty-three MR cases from the dataset were randomly se-
lected for this observer experiment. There were a total of 41
breasts because some cases had only one breast. For this
subset of cases, each radiologist was asked to select the start-
ing slice from the MR images for each breast. The estimated
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% volumetric fibroglandular tissue calculated with all avail-
able slices was then compared to that calculated with the
selected starting slice.

We also performed observer experiments to evaluate the
inter-observer variations in the segmentation of fibroglandu-
lar tissue using the semi-automatic method. Two MQSA-
qualified radiologists performed the segmentation of the fib-
roglandular tissue on the MR images of the 41 breasts using
the semi-automatic method implemented with the GUI. A
Ph.D. researcher who was trained by these radiologists also
performed the segmentation independently with the GUI.

After verifying the consistency of segmentation by these
observers, the trained Ph.D. completed the segmentation of
all MR cases. The correlation between percent volumetric
fibroglandular tissue on MR images and percent dense area
on mammograms was then examined for the entire dataset.

Ill. RESULTS
A. Effect of selection of the starting slice

Figure 5(a) shows the correlation of the % volumetric
fibroglandular tissue calculated using all available slices for
the breast with that calculated using the selected starting
slice by radiologist A for the 41 breasts. The correlation co-
efficient was 0.999. To compare the difference between their
results, the mean difference and the root-mean-square (rms)
residual, which is the residual from the linear least-squares-
fitted line, were also calculated. The mean difference was 0.7
and the rms residual was 0.6. The result is similar for radi-
ologist B (not shown), with a correlation coefficient of 0.999,
a mean difference of 0.4 and a rms residual of 0.4. The
correlation between the % volumetric fibroglandular tissue
calculated using the selected starting slice by radiologist A
with that calculated using the selected starting slice by radi-
ologist B was also very high with a correlation coefficient of
0.988, a mean difference of 0.7 and a rms residual of 1.8, as
shown in Fig. 5(b). These comparisons indicated that the
variability in the selection of the starting slice of the breasts
did not have a strong influence on the % volumetric fibro-
glandular tissue. We therefore used all available slices in the
MR dataset for each breast in the following analyses.
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. Inter-observer variation between radiologists

Figure 6(a) shows the comparison of the percent volumet-
ric fibroglandular tissues on MR images segmented by two
radiologists for the 41 breasts. The correlation between the
segmentation results of the two radiologists is 0.99. The
mean difference was found to be 0.3 and the rms residual
was 1.6.

C. Inter-observer variation between radiologists and
trained Ph.D.

Figure 6(b) shows the comparison of the percent volumet-
ric fibroglandular tissues segmented by the trained Ph.D.
against that segmented by radiologist A. A similar result was
obtained by comparing the percent volumetric tissue seg-
mented by the trained Ph.D. and that segmented by radiolo-
gist A except that the data points were even closer to the
diagonal (not shown). The correlation between the result of
the trained Ph.D. and the results of both radiologists was
0.99. The corresponding mean differences were —0.8 and
—0.4, respectively, and the rms residuals were 1.4 and 1.5,
respectively.

D. Correlation between percent volumetric
fibroglandular tissue on MR images and percent
mammographic density

The percent volumetric fibroglandular tissue on MR im-
ages was compared with the percent dense area on CC- and

MLO-view mammograms. After verifying that the difference
in segmentation between the trained Ph.D. and the radiolo-
gists was similar to the interobserver variations between the
two experienced radiologists, the trained Ph.D. completed
the segmentation of the entire dataset.

Figure 7 shows the comparison of the percent volumetric
fibroglandular tissue on MRI and the percent mammographic
density segmented by a radiologist. The percent areas on CC-
and MLO-view mammograms are higher than the percent
volume on MR images with a mean difference of 5.7% and
3.0%, respectively.

Figure 8 shows the comparison of the percent volumetric
fibroglandular tissue on MRI and the percent mammographic
density segmented by MDEST. The percent areas on CC-
and MLO-view mammograms segmented by the computer
are higher than the percent volume on MR images with a
mean difference of 5.3% and 2.6%, respectively.

The correlation coefficients, the mean differences and the
rms residuals between the percent volumetric fibroglandular
tissue on MR images and percent dense area on mammo-
grams are compared in Table. I. The correlation between the
percent volume on MR images and percent area on mammo-
grams of the fibroglandular breast tissue is high, ranging
from 0.89 to 0.91. Although it is not expected that the values
of percent volume agree with the values of percent area, their
mean differences range only from 3% to 6% and the rms
residual range from 5.4 to 6.3.

% Volume-MRI (Radiologist B)

(a) (b)
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IV. DISCUSSION glandular tissue in the breast, it is still not the ideal tool.

Our purpose in this paper was to investigate the relation- Fiprous tissue anq glapdular tigsue are .not well separated
ship between the percent dense area on mammogram and the with currept MR imaging te({hnlqut?s. Since the amount. of
percent fibroglandular tissue volume on MR image. We glandular tissue in the breast is tbe important factor rel'atmg
found a direct correlation between mammographic density to l.)re‘ast cancer risk, further studies are warranted for differ-
and MR volumetric density (Fig. 7 and Fig. 8). The correla- .entlatmg the glandular and 'the fibrous components of the
tion coefficients between the percent area on a mammogram 1mag'ed volume. The correlation betvyeen the percent glandu-
and the percent volume on MR images are high at 0.89 and  lar tissue volurpe and percent ‘prOJe'cte.d dense area on a
0.91. These results are more promising than those found in ~ Mammogram will be a more reliable indicator of the useful-
previous studies that attempted to correlate percent dense  Pess of mammographic density analysis.
area on mammograms with MR information. Graham er al.?* The density on mammograms is a 2-D projected area of
investigated the relationship between percent density (pro-  the fibroglandular tissues. The percent dense area is not ex-
jected dense area) on mammogram and two objective MR Pected to be equal in value to the percent volume. The mean
parameters of breast tissue, relative water content and mean  differences between the percent volume and the percent area
T2 relaxation. Their results with 45 cases showed a positive ~ on CC- and MLO-views, as determined by the radiologist’s
correlation between percent density and relative water con-  interactive segmentation, are 5.7 and 3.0, respectively (Table
tent (Pearson correlation coefficient=0.79) and a negative 1), with the percent dense area values being higher. We also
correlation between percent density and mean T2 value  investigated the rms residual between the percent volume
(Pearson correlation coefficient= ~0.61). Another study by  and the percent area when the relationship between them was
Lee ez al.** analyzed fatty and fibroglandular tissue in differ-  assumed to be linear. The rms residual between the percent
ent age groups to compare x-ray mammography with T1-  volume and the percent area on CC- and MLO-views are 6.3
weighted MR images. Their study with 40 cases indicated  and 5.6, respectively (Table I), relative to the straight line
that the correlation between the two techniques is 0.63 when ~ obtained from linear least squares fits to the data. One pos-
the fat content was more than 45%. However, the correlation  sible factor that may contribute to a higher value of percent
coefficient decreased to 0.34 when their analysis included  dense area on mammograms than the percent volume value

only dense breasts. on MR images is that the tissue volume imaged by the two
- It may be noted that although MR imaging is currently the ~ modalities is somewhat different. The MR images include
most accurate method for estimating the volumetric fibro-  more tissue near the chest wall, which is mainly retroglan-
60 . — 60
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TaBLE L. Statistic analysis of the relationship between percent fibroglandular
tissue volume on breast MR images and percent dense area on mammo-
grams segmented by radiologist and MDEST.

Radiologist Computer (MDEST)
CCvs MLO vs CC vs MLO vs
MRI MRI MRI MRI
Correl. coeff. 0.91 0.91 0.91 0.89
rms residual 6.3 5.6 5.8 5.4
Mean diff. 5.7 3.0 53 2.6

dular adipose tissue, than a mammogram does, thus reducing
the percentage of fibroglandular tissue volume. The reduc-
tion in the percent volume values, however, is relatively
small, as found in our study evaluating the effects of select-
ing starting slices for volume calculation (Fig. 5). The main
difference may therefore be attributed to the geometric rela-
tionship between the volume and the projected 2-D area,
explained later.

Geometrically, we do not expect the relationship between
volume and its projected 2-D area to be linear. In a hypo-
thetical situation such that the dense tissue volume is a
sphere (volume=4/3 7713) enclosed inside a concentric
spherical shell of fatty tissue volume, the percent projected
2-D area (area= wr®) of the inner sphere relative to the
outer sphere is equal to the percent volume to the power of
2/3. The relationship between the percent area and the per-
cent volume is therefore not linear, and the percent area is
larger in value than the percent volume for any ratio of radii
between the two spheres. In general, the compressed breast
and the dense tissue are not spherical. To investigate the
empirical relationship between the percent area and the per-
cent volume in the nonlinear situation, we applied least
squares fits in several polynomial models to the data points
in Fig. 7. The results are shown in Table II and Fig. 9. A
comparison of Table I and Table II indicates that the Y
= kx** model (x=percent fibroglandular tissue volume, ¥
=percent mammographic dense area) resulted in slightly
larger rms residuals than the linear model. The model Y
=kx™ with m equal to 0.83 and 0.86, respectively, for CC-
and MLO-views slightly reduced the rms residuals. The best
fit was obtained from the model ¥ = k;x™+k, . However, the

TABLE II. An analysis of the relationship between percent fibroglandular
tissue volume (x) on breast MR images and percent dense area (Y) on
mammograms segmented by radiologist using three mathematical models.
m, k, k; and k, are constants determined by least squares curve fitting.

Mathematical model Y=kx?? Y=kx" Y=k x"+k,

CC  Least squares Fit Y=0.82* Y=1.0323 y=1.02x"%-0.19
vs rms residual 6.5 6.0 5.6
MRI  Coefficient of 0.82 0.85 0.87
determination
MLO Least squares Fit ¥=0.73x"> y=0.96x% y=0.90x"%-0.09
Vs rms residual 6.0 5.5 5.3
MRI  Coefficient of 0.80 0.84 0.85
determination

situation that the percent projected area was negative when
the percent volume was zero would not occur physically.
Note that if the model was fitted to the percent area data
segmented by MDEST (Fig. 8), the k, values would become
positive, indicating that the nonzero k, values are likely
caused by segmentation biases.

Overall, these models demonstrate that there is no simple
mathematical relationship between the percent volume and
the percent projected area but the values for the exponents
appeared to be in a reasonable range. The relationship be-
tween the percent volumes of two 3-D objects, one within
another, and their percent projected 2-D area depends on
their shapes. For example, the closer the two volumes are to
concentric cylinders of the same height, the closer the expo-
nent is to unity. The spread of the data points can therefore
be attributed to the various irregular shapes of the fibroglan-
dular tissue in the breasts, the changes in the shapes of the
fatty and fibroglandular tissue due to compression, as well as
the uncertainties in the segmentation of both the mammo-
grams and the MR images. Although the spread of the data
points in the correlation plots is large, one can expect that
when the mammographic density of a given patient is moni-
tored over time, the variations in the projected dense area
due to the geometric factors, described above, will actually
be much less than that observed from the scatter plots among
a large number of patients. In other words, the uncertainty in
the estimated percent density from the serial mammograms
of a given patient should be much less than those shown in

60 60
50 4 50
3 3
g 40 4 > 40 1
o g 1 F1G. 9. Nonlinear fitting of the relationship between the
Q 30 = 30 percent volume and the percent area segmented by a
§ 4 s radiologist with the least squares method. (a) CC view,
< 20 < 207 (b) MLO view. Dashed line: y =kx??; dashed—dotted—
S ® ] dotted line: y=kx"; solid line: y=k,x"™+k,. The fit-
10 10 1 ted parameters of the models, m, k, k; and k,, are
1 1 shown in Table II.
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% Volume-MRI % Volume-MRI
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Fig. 7. The strong correlation observed between the percent
dense area on mammograms and the percent volumetric fib-
roglandular tissue on MR images therefore indicates that a
change in mammographic density can be a useful indicator
of a change in percent fibroglandular tissue volume in the
breast.

Recently, some researchers attempted to estimate the
thickness of the fibroglandular tissue in local regions of the
mammograms from the projected density.>” This approach is
expected to provide a more accurate estimation of the fibro-
glandular tissue volume if the true thicknesses of the fibro-
glandular tissue and fatty tissue can be determined at various
locations of the projected breast region. The volume of the
fibroglandular tissue can then be summed over the pixels in
the breast region and the percent volume calculated. How-
ever, to obtain accurate measurements, this approach requires
the knowledge of the sensitometric curve for the screen-film
mammogram at the imaging facility (or use of a digital de-
tector with linear response) and other physical parameters
such as the scatter fraction, the beam quality and beam hard-
ening, in addition to the compressed breast thickness and the
breast shape profile at the periphery. Some of the require-
ments may be circumvented by using a look-up table prede-
termined with a phantom calibration. Other factors may have
to be approximated or ignored, or require further corrections
by imaging each mammogram with a calibration phantom
placed adjacent to the breast. This method is still being de-
veloped and the accuracy of estimating the thickness of the
local fibroglandular tissue from a mammogram is yet to be
determined. To our knowledge, no study to date has demon-
strated that fibroglandular tissue volume estimated from
mammograms has a higher correlation with the percent volu-
metric fibroglandular tissue volume estimated from MR im-
ages or other volumetric methods than we found in our cur-
rent study. Furthermore, even if the local fibroglandular
tissue thickness on mammograms can be measured in a labo-
ratory or in an academic center using elaborate calibration
schemes, it is doubtful that these methods can be translated
into routine clinical measurement in mammography clinics.
Its use may then be limited to controlled clinical trials. An
estimation of the percent dense area projected on mammo-
grams is likely a more practical approach for breast density
assessment. The high correlation between the percent dense
area and the percent fibroglandular tissue volume on MR
images as demonstrated in the current study further supports
the validity of this approach.

V. CONCLUSION

In this study, we investigated the correlation between the
“percent mammographic dense area and the percent volumet-
ric fibroglandular tissue as measured on MR images. A semi-
automatic method was developed for segmentation of the
MR images and a fully automated computerized method,
MDEST, was used to segment the mammograms. The per-
formance of MDEST on the set of mammograms used in this
study was verified with an experienced radiologist’s manual
segmentation. The inter-observer variability in segmentation

Medical Physics, Vol. 31, No. 4, April 2004

of MR images was found to be small with correlation coef-
ficients of 0.99. The correlation between the percent volume
on MR images and percent area segmented by a radiologist
for either CC- view or MLO-view is 0.91. The correlation
between percent volume and percent area estimated by MD-
EST is 0.91 and 0.89, respectively, for CC and MLO views.
Mammographic density is thus highly correlated with the
percent volumetric fibroglandular tissue in the breast. The
high correlation indicates that changes in mammographic
density may be a useful indicator of changes in fibroglandu-
lar tissue volume in the breast. Our computerized image
analysis tool, MDEST, can provide a consistent and repro-
ducible estimation of percent dense area on routine clinical
mammograms. The automated image analysis tool may im-
prove the sensitivity of quantifying mammographic density
changes, thereby contributing to the understanding of the re-
lationship of mammographic density to breast cancer risk,
detection, and prognosis, and the prevention and treatment of
breast cancer.
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Abstract. Studies have demonstrated a strong correlation between mammographic breast
density and breast cancer risk. We have previously developed a computerized system,
mammographic density estimator (MDEST), to estimate breast density automatically on
digitized film mammograms (DFM). In this study, we evaluated the performance of the
MDEST system on full field digital mammograms (FFDM) and DFMs. The input to the
system is a preprocessed dynamic range compressed image. The breast region is first
segmented by breast boundary detection. The pectoral muscle is trimmed if it is an MLO
view. A rule-based classifier is then used to classify the breast image into one of four classes
according to the characteristics of its gray level histogram. The dense area from the breast
region is subsequently segmented by automatic gray level thresholding. The breast density is
estimated as the percentage of the segmented dense area relative to the breast area. In this
study, two-view FFDM and the corresponding DFM from 99 patients with 202 images in
each set were used. The dense area on each mammogram was segmented by 4 radiologists
using interactive thresholding and their average was used as the “gold standard”. The
MDEST system was directly applied to the FFDM and DFM data without any re-training
except that the preprocessing filter was modified for FFDMs. We found that the correlation
between the estimated percent dense area and the gold standard was 0.850 and 0.873 on
FFDM, and 0.885 and 0.824 on DFM, for CC and MLO views, respectively. The results
demonstrated the feasibility of estimating breast density automatically on FFDM and DFM
using the same MDEST system.

1. Introduction

Studies have demonstrated a strong correlation between breast density on mammograms and
breast cancer risk (Saftlas and Szklo 1987; Brisson et al. 1989; Saftlas et al. 1991; Oza and
Boyd 1993; Boyd et al. 1998; Yaffe et al. 1998). The relative risk is estimated to be about 4
to 6 times higher for women whose mammograms have parenchymal densities over 60% of
the breast area, as compared to women with less than 5% of parenchymal densities. The
strong correlation between breast density and breast cancer risk has prompted researchers to
use mammographic density as an indicator for monitoring the effects of preventive or
interventional treatment of breast cancer.

Because of the subjective nature of visual analysis, qualitative estimation may vary from
radiologist to radiologist. A computerized method for measuring mammographic density
would be useful as a supplement to the radiologist’s assessment. We have previously
developed a computerized system, mammographic density estimator (MDEST) (Zhou et al.
2001), to estimate breast density automatically on digitized film mammograms (DFM). The
MDEST system performs dynamic range compression, breast boundary tracking, pectoral
muscle trimming for MLO view, gray level thresholding based on histogram analysis, and
calculation of the percent dense area on the mammogram. In the previous study, 260 digitized
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4-view mammograms of 65 patients were used. The gold standard of percent dense area of
the breast region for each mammogram was obtained by averaging five radiologists’
manually segmented percent dense area. We found that the correlation between the computer-
estimated percent dense area and radiologists’ manual segmentation was 0.94 and 0.91, with
RMS errors at 6.1% and 7.2%, respectively, for CC and MLO views.

In this study, we investigate the feasibility of computerized mammogramic density estimation
on FFDMs and DFMs using the same image segmentation system. The MDEST system was
directly applied to the FFDM and the corresponding DFM without any re-training except that
the preprocessing filter was modified for FFDMs. The performance was evaluated by
analyzing the correlation between the computer-estimated mammographic density and the
gold standard obtained by radiologists’ interactive thresholding.

2. Materials and Methods

The data sets consisting of FFDM and the corresponding DFM of 99 patients with 202
images in each set were used. Each case contains the craniocaudal (CC) view and the
mediolateral oblique (MLO) view. The FFDM was acquired with a GE Senographe 2000D
system and the raw GE FFDM was processed by a Laplacian pyramid multi-resolution
preprocessing method (Wei et al. 2004). The preprocessed image was downsized to a pixel
size of 800 um x 800 pum image and 4096 gray levels. The DFM was acquired with
mammography systems approved by the Mammography Quality Standards Act (MQSA) and
was digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 pm x 50 um and
4096 gray levels. The digitized mammogram was also downsized to a 800 um x 800 um
image using a 16x16 box filter.

Our previously developed computerized system MDEST was applied to the FFDMs and
DFMs to estimate the mammographic density without any re-training. The density estimation
was performed in three stages: breast region segmentation, image enhancement, and gray
level thresholding based on histogram analysis . First, the breast region was segmented from
the surrounding background by an automated breast boundary tracking algorithm for DFM.
For FFDM, thresholding was used to separate the breast region from the background. Since
our current pectoral muscle trimming program is not 100% accurate, the pectoral muscle was
manually trimmed on the MLO view images for both DFM and FFDM in this study in order
to separate the errors due to breast density segmentation from those due to pectoral muscle
trimming. Second, an adaptive dynamic range compression technique was applied to enhance
the DFM image. For FFDM image, a Laplacian pyramid multi-resolution preprocessing
method (Wei et al. 2004) was used for image enhancement. At the third stage, for both
FFDM and DFM, rule-based classification was used to classify the breast image into one of
four classes according to the characteristic features of its gray level histogram (Zhou et al.
2001). For each image in the classified classes, a gray level threshold was determined
adaptively to segment the dense area from the breast region. The breast density was estimated
as the percentage of the segmented dense area relative to the breast area. As an example,
typical mammograms in the four classes with the corresponding enhanced images,
histograms, selected thresholds and the segmented image are shown in Figure 1. To evaluate
the performance of MDEST, the computer segmentation results were compared to those by
manual segmentation with interactive thresholding by four MQSA radiologists. The “gold
standard” of percent dense area for each mammogram was obtained by averaging the
manually segmented percent dense areas of the four radiologists.
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Figure 1. Typical mammograms in the four density classes and the corresponding enhanced
and segmented images, histograms and thresholds. The columns from left to right correspond
to the original image, enhanced image, segmented image and the histogram. Rows from top
to bottom correspond to class one to four.

3. Results

Figures 2(a)-(d) show the comparison of the percent dense area between the estimation by the
MDEST system and the gold standard on FFDM and DFM for CC- and MLO-view
mammograms, respectively. Table 1 summarizes the comparison between the MDEST
performance and the gold standard for FFDM and DFM, respectively. The correlation
between the computer-estimated percent dense area and the gold standard is 0.850 and 0.873
on FFDM, and 0.885 and 0.824 on DFM, for CC and MLO views, respectively. For all of the
images combining CC- and MLO-views, the correlation is 0.859 and 0.855 on FFDM and
DFM, respectively. The RMS difference in the percent dense area between the MDEST
estimation and the gold standard is 7.26%, 5.70% and 6.52% on FFDM, and 6.87%, 8.16%
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and 7.54% on DFM for CC-view alone, MLO-view alone, and combined CC and MLO-
views, respectively.

Table I. The correlation and RMS difference between the estimated percent
dense area by the MDEST system and the gold standard (average of four

MQSA radiologists).
FFDM DFM
Image subsets | Correlation ~ RMS Error | Correlation ~ RMS Error
CC view 0.850 7.26% 0.885 6.87%
MLO view 0.873 5.70% 0.824 8.16%
All images 0.859 6.52% 0.855 7.54%

4. Conclusion

Our preliminary study demonstrated that the estimation of mammographic density could be
performed efficiently by the automated image analysis tool. The computer-estimated percent
dense area had a high correlation with the gold standard obtained from averaging four MQSA
radiologists’ manual segmentation. The results also demonstrated the feasibility of estimating
breast density automatically on FFDM and DFM using the same MDEST system. Further
study will be conducted to improve the breast density segmentation accuracy.
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Figure 2. Comparison of the percent dense area between the estimation by the
MDEST system and the gold standard. The dashed line represents the linear
regression of the data on the plot. (a) FFDM CC view, (b) FFDM MLO view, (c)
DFM CC view, (d) DFM MLO view.

Acknowledgments

This work is supported by U. S. Army Medical Research and Materiel Command grant
DAMD 17-01-1-0326 and USPHS grant CAD95153. The content of this paper does not
necessarily reflect the position of the government and no official endorsement of any
equipment and product of any companies mentioned should be inferred.




Y7

Digital Mammography IWDM-2004

References

Boyd, N. F., G. A. Lockwood, J. W. Byng, D. L. Tritchler and M. J. Yaffe. 1998.

Mammographic densities and breast cancer risk. Cancer Epidemiology Biomarkers &
Prevention 7:1133-1144.

Brisson, J., R. Verreault, A. S. Morrison, D. Tennina and F. Meyer. 1989. Diet,

mammographic features of breast tissue, and breast cancer risk. Am. J. Epidemiology 130:14-
24.

Oza, A. M. and N. F. Boyd. 1993. Mammographic parenchymal patterns: A marker of breast
cancer risk. Epidemiologic Reviews 15:196-208.

Saftlas, A. F., R. N. Hoover, L. A. Brinton, M. Szklo, D. R. Olson, M. Salane and J. N.
Wolfe. 1991. Mammographic densities and risk of breast cancer. Cancer 67:2833-2838.

Saftlas, A. F. and M. Szklo. 1987. Mammographic parenchymal patterns and breast cancer
risk. Epidemiologic Reviews 9:146-174.

Wei, J., B. Sahiner, L. Hadjiiski, H. P. Chan, N. Petrick, M. A. Helvie, C. Zhou and Z. Ge.
2004. Computer aided detection of breast masses on full-field digital mammograms: false

positive reduction using gradient field analysis. Proc. SPIE Medical Imaging 2004: Image
Processing 5370:992-998.

Yaffe, M. J,, N. F. Boyd, J. W. Byng, R. A. Jong, R. Fishell, G. A. Lockwood, L. E. Little
and D. L. Tritchler. 1998. Breast cancer risk and measured mammographic density. European
J. of Cancer Prevention 7, Suppl. 1:547-S55.

Zhou, C., H. P. Chan, N. Petrick, M. A. Helvie, M. M. Goodsitt, B. Sahiner and L. M.
Hadjiiski. 2001. Computerized image analysis: Estimation of breast density on
mammograms. Medical Physics 28:1056-1069.




